Delayed treatment with the immunotherapeutic LNFPIII ameliorates multiple neurological deficits in a pesticide-nerve agent prophylactic mouse model of Gulf War Illness

2021 
Abstract Residual effects of the 1990–1991 Gulf War (GW) still plague veterans 30 years later as Gulf War Illness (GWI). Thought to stem mostly from deployment-related chemical overexposures, GWI is a disease with multiple neurological symptoms with likely immunological underpinnings. Currently, GWI remains untreatable, and the long-term neurological disease manifestation is not characterized fully. The present study sought to expand and evaluate the long-term implications of prior GW chemicals exposure on neurological function 6–8 months post GWI-like symptomatology induction. Additionally, the beneficial effects of delayed treatment with the glycan immunotherapeutic lacto-N-fucopentaose III (LNFPIII) were evaluated. Male C57BL/6J mice underwent a 10-day combinational exposure (i.p.) to GW chemicals, the nerve agent prophylactic pyridostigmine bromide (PB) and the insecticide permethrin (PM; 0.7 and 200 mg/kg, respectively). Beginning 4 months after PB/PM exposure, a subset of the mice were treated twice a week until study completion with LNFPIII. Evaluation of cognition/memory, motor function, and mood was performed beginning 1 month after LNFPIII treatment initiation. Prior exposure to PB/PM produced multiple locomotor, neuromuscular, and sensorimotor deficits across several motor tests. Subtle anxiety-like behavior was also present in PB/PM mice in mood tests. Further, PB/PM-exposed mice learned at a slower rate, mostly during early phases of the learning and memory tests employed. LNFPIII treatment restored or improved many of these behaviors, particularly in motor and cognition/memory domains. Electrophysiology data collected from hippocampal slices 8 months post PB/PM exposure revealed modest aberrations in basal synaptic transmission and long-term potentiation in the dorsal or ventral hippocampus that were improved by LNFPIII treatment. Immunohistochemical analysis of tyrosine hydroxylase (TH), a dopaminergic marker, did not detect major PB/PM effects along the nigrostriatal pathway, but LNFPIII increased striatal TH. Additionally, neuroinflammatory cells were increased in PB/PM mice, an effect reduced by LNFPIII. Collectively, long-term neurobehavioral and neurobiological dysfunction associated with prior PB/PM exposure was characterized; delayed LNFPIII treatment provided multiple behavioral and biological beneficial effects in the context of GWI, highlighting its potential as a GWI therapeutic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    112
    References
    0
    Citations
    NaN
    KQI
    []