Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication C Band

2020 
Teleportation is a fundamental concept of quantum mechanics with an important application in extending the range of quantum communication channels via quantum relay nodes. To be compatible with real-world technology such as secure quantum key distribution over fiber networks, such a relay node should ideally operate at gigahertz clock rates and accept time-bin-encoded qubits in the low-loss telecom band around 1550 nm. Here, we show that In As-In P droplet-epitaxy quantum dots, with their sub-Poissonian emission near 1550 nm, are ideally suited for the realization of this technology. To create the necessary on-demand photon emission at gigahertz clock rates, we develop a flexible-pulsed optical-excitation scheme and demonstrate that the fast driving conditions are compatible with a low multiphoton emission rate. We show further that, even under these driving conditions, photon pairs obtained from the biexciton cascade show an entanglement fidelity close to 90%, comparable to the value obtained under continuous-wave excitation. Using asymmetric Mach-Zehnder interferometers and our photon source, we finally construct a time-bin qubit quantum relay able to receive and send time-bin-encoded photons and demonstrate mean teleportation fidelities of 0.82 ± 0.01, exceeding the classical limit by more than ten standard deviations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    16
    Citations
    NaN
    KQI
    []