Improvement of Photocatalytic Performance for the g-C3N4/MoS2 Composite Used for Hypophosphite Oxidation

2020 
The synthesized g-C3N4/MoS2 composite was a high-efficiency photocatalytic for hypophosphite oxidation. In this work, a stable and cheap g-C3N4 worked as the chelating agent and combined with the MoS2 materials. The structures of the fabricated g-C3N4/MoS2 photocatalyst were characterized by some methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS). Moreover, the photocatalytic performances of various photocatalysts were measured by analyzing the oxidation efficiency of hypophosphite under visible light irradiation and the oxidation efficiency of hypophosphite using the g-C3N4/MoS2 photocatalyst which was 93.45%. According to the results, the g-C3N4/MoS2 composite showed a promising photocatalytic performance for hypophosphite oxidation. The improved photocatalytic performance for hypophosphite oxidation was due to the effective charge separation analyzed by the photoluminescence (PL) emission spectra. The transient photocurrent response measurement indicated that the g-C3N4/MoS2 composites (2.5 μA cm–2) were 10 times improved photocurrent intensity and 2 times improved photocurrent intensity comparing with the pure g-C3N4 (0.25 μA cm–2) and MoS2 (1.25 μA cm–2), respectively. The photocatalytic mechanism of hypophosphite oxidation was analyzed by adding some scavengers, and the recycle experiments indicated that the g-C3N4/MoS2 composite had a good stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []