Optical and structural characterization of a self-aligned single electron transitor structure by cathodoluminescence microscopy

2000 
Abstract We report about optical and structural investigations of a self-aligned single electron transistor (SET) structure using cathodoluminescence-(CL) and transmission electron microscopy (TEM). The SET structures were fabricated by MBE growth of GaAs/AlAs on different prepatterned GaAs (1 0 0) substrates. This technique for the in situ formation of nanoscopic semiconductor heterostructures is presently a widely used and promising approach for the fabrication of low-dimensional systems like quantum wires and quantum dots (QD). The active region of the SET structure consists of a GaAs/AlGaAs-QD formed by thickness modulation of a single quantum well (SQW) during the MBE growth. The position and the size of the QD is defined by the design of the substrate pattern. The thickness modulation of the GaAs-SQW is evidenced by TEM investigations. The lateral confinement potential given by the thickness modulation of GaAs-SQW is directly imaged by CL microscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    2
    Citations
    NaN
    KQI
    []