Structural–geological and karst feature investigations of the limestone–flysch thrust-fault contact using low-frequency ground penetrating radar (Adria–Dinarides thrust zone, SW Slovenia)

2015 
The Karstic thrust edge, a pronounced geomorphologic step, which is a result of the tectonostratigraphic evolution of the active Adria–Dinarides thrust zone, represents a major obstacle for the planned new railway route Divaca–Koper. Thus, the geotechnical and structural properties as well as the geometry of the thrust-fault planes in this area are of great importance. Since geological mapping cannot give insight into the subsurface to reveal a complex 3D structure, and the numerous boreholes needed to investigate the area would be too expensive and time consuming, the application of a geophysical method such as ground penetrating radar (GPR) is needed. To test the method for determining near surface features and detecting low-angle inclined thrusts, a low frequency GPR system with 50 MHz rough terrain antenna was used to record 13 GPR profiles along all three floors of the Crnotice quarry, where the spatial position of the Socerb thrust fault that separates limestones above and flysch layers below is relatively well documented. The profiles were positioned across selected existing boreholes. The GPR results were correlated with borehole data as well as geological mapping results. The GPR provided not only precise information on the geometry of the Socerb thrust fault, but was also very useful for establishing the position of some known as well as several potential cavities, both air- and sediment-filled. In areas further from the thrust-fault zone, where the limestone is less tectonically damaged, it was also possible to determine apparent dip angles of the strata, which after reconstruction matched the true dips gathered from geological mapping.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    11
    Citations
    NaN
    KQI
    []