Carbon resistance of xNi/HTASAO5 catalyst for the production of H2 via CO2 reforming of methane

2021 
Abstract xNi/HTASAO5 catalysts (x = 2.5, 3.3, 4.4, 5.8, 8.2) were prepared for CO2 reforming of methane. No crystalline nickel species formed on the catalysts with lower nickel content (≤4.4%), and large Ni0 crystallite formed on 5.8% (10 nm) and 8.2 wt%Ni/HTASAO5 (17 nm), whereas the surface concentration of Ce3+ decreased with Ni loading. The initial conversion of CH4 increased from 29.5% to 46.9% with Ni loading. The xNi/HTASAO5 (x ≤ 4.4%) performed stably in the reaction due to the presence of dispersed Ni species and high surface Ce3+ content without coke formation, however, 5.8% and 8.2 wt%Ni/HTASAO5 exhibited decreased activity with time on stream, because of the formation of large Ni particles with lower surface Ce3+, leading to carbon accumulation. Thus, CH4 conversion stabilized at about 43% and no carbon formed on 4.4 wt%Ni/HTASAO5 with optimum Ni loading.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    1
    Citations
    NaN
    KQI
    []