Systematically disrupted functional gradient of the cortical connectome in generalized epilepsy: Initial discovery and independent sample replication.

2021 
Abstract Genetic generalized epilepsy is a network disorder typically involving distributed areas identified by classical neuroanatomy. However, the finer topological relationships in terms of continuous spatial arrangement between these systems are still ambiguous. Connectome gradients provide the topological representations of human macroscale hierarchy in an abstract low-dimensional space by embedding the functional connectome into a set of axes. Leveraging connectome gradients, we systematically scrutinized abnormalities of functional connectome gradient in patients with genetic generalized epilepsy with tonic-clonic seizure (GGE-GTCS, n = 78) compared to healthy controls (HC, n = 85), and further examined the reproducibility across multiple processing configurations and in an independent validation sample (patients with GGE-GTCS, n = 28; HC, n = 31). Our findings demonstrated an extended principal gradient at different spatial scales, network-level and vertex-level, in patients with GGE-GTCS. We found consistent results across processing parameters and in validation sample. The extended principal gradient revealed the excessive functional segregation between unimodal and transmodal systems associated with duration of epilepsy and age at seizure onset in patients. Furthermore, the connectivity profile of regions with abnormal principal gradients verified the disrupted functional hierarchy revealed by gradients. Together, our findings provided a novel view of functional system hierarchy alterations, which facilitated a continuous spatial arrangement of macroscale networks, to increase our understanding of the functional connectome hierarchy in generalized epilepsy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    4
    Citations
    NaN
    KQI
    []