Pd2Ga-Based Colloids as Highly Active Catalysts for the Hydrogenation of CO2 to Methanol

2017 
Colloidal Pd2Ga-based catalysts are shown to catalyze efficiently the hydrogenation of CO2 to methanol. The catalysts are produced by the simple thermal decomposition of Pd(II) acetate in the presence of Ga(III) stearate, which leads to Pd0 nanoparticles (ca. 3 nm), and the subsequent Pd-mediated reduction of Ga(III) species at temperatures ranging from 210 to 290 °C. The resulting colloidal Pd2Ga-based catalysts are applied in the liquid-phase hydrogenation of carbon dioxide to methanol at high pressure (50 bar). The intrinsic activity is around 2-fold higher than that obtained for the commercial Cu-ZnO-Al2O3 (60.3 and 37.2 × 10–9 molMeOH m–2 s–1), respectively, and 4-fold higher on a Cu or Pd molar basis (3330 and 910 μmol mmolPd or Cu–1 h–1). Detailed characterization data (HR-TEM, STEM/EDX, XPS, and XRD) indicate that the catalyst contains Pd2Ga nanoparticles, of average diameters 5–6 nm, associated with a network of amorphous Ga2O3 species. The proportion of this Ga2O3 phase can be easily tuned by ad...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    51
    Citations
    NaN
    KQI
    []