Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion

2019 
Abstract Combining transmission Kikuchi diffraction, high resolution transmission electron microscopy and atom probe tomography, we investigated an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion (HPT) at room temperature and 200 °C, with an objective to reveal the deformation-induced precipitation and segregation of elements at grain boundaries, and to study their appearance at different processing regimes. Although HPT processing at the two temperatures both induced the formation of ŋ phase, ŋ precipitates formed at the two temperatures have different chemical compositions. The increase of the HPT processing temperature increased significantly segregation of Mg and Cu at grain boundaries. The HPT–induced segregation and decomposition of the alloy have a significant effect on its mechanical strength. Our results open a way for achieving advanced mechanical properties in nanostructured metals and alloys by designing their precipitation and segregation through the control of SPD processing regimes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    82
    Citations
    NaN
    KQI
    []