Amino Acid Side Chains Buried along Intersubunit Interfaces in a Viral Capsid Preserve Low Mechanical Stiffness Associated with Virus Infectivity

2017 
Single-molecule experimental techniques and theoretical approaches reveal that important aspects of virus biology can be understood in biomechanical terms at the nanoscale. A detailed knowledge of the relationship in virus capsids between small structural changes caused by single-point mutations and changes in mechanical properties may provide further physics-based insights into virus function; it may also facilitate the engineering of viral nanoparticles with improved mechanical behavior. Here, we used the minute virus of mice to undertake a systematic experimental study on the contribution to capsid stiffness of amino acid side chains at interprotein interfaces and the specific noncovalent interactions they establish. Selected side chains were individually truncated by introducing point mutations to alanine, and the effects on local and global capsid stiffness were determined using atomic force microscopy. The results revealed that, in the natural virus capsid, multiple, mostly hydrophobic, side chains ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    12
    Citations
    NaN
    KQI
    []