Numerical Modeling of Tides in Hudson Bay

1976 
A two-dimensional numerical model is developed to study the cooscillating and independent tides in Hudson Bay. Using centered differences (forward differences for the dissipative term) and conjugate Richardson lattices, the Laplace Tidal Equations in spherical polar coordinates are integrated in time until cyclic equilibrium is reached. For the cooscillating tide, the direct tidal forcing term is set to zero, and the observed tidal constituent is specified at the mouth of Hudson Bay. Separate runs are made for M2, S2, N2, and K1. For the independent tide, the closed mouth boundary condition of zero water transport is imposed, and the model run for the M2 and K1 direct tidal forcing. A number of experiments are carried out to test the sensitivity of the model to uncertainties in the input data and parameterization of some of the terms. It is shown that the tidal propagation is relatively insensitive to friction coefficient and island schematization, but very sensitive to depth representation in the Belcher...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    17
    Citations
    NaN
    KQI
    []