Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors

2006 
The authors study deoxyribonucleic acid (DNA) sensing characteristics of carbon nanotube network field-effect transistors (CNNFETs) by monitoring their electrical responses upon immobilization with a DNA probe, hybridization with DNA analytes, and intercalation with a N,N′-bis(3-propylimidazole)-1,4,5,8-naphthalene diimide modified with Os(2,2′-bipyridine)2Cl+ pendants. The CNNFETs immobilized by single-stranded DNA molecules demonstrate the selective sensing of its complementary and single-base mismatched DNA (difference of ∼16% in reduction of normalized drain current Id). Subsequent intercalation demonstrates a further sensitivity enhancement (difference of ∼13% in Id reduction) due to specific binding between hybridized DNA and intercalators, corroborated by the x-ray photoelectron spectroscopy study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    42
    Citations
    NaN
    KQI
    []