Stand Diameter Distribution Modeling and Prediction Based on Maximum Entropy Principle

2019 
Research Highlights: Improving the prediction accuracy represents a popular forest simulation modeling issue, and exploring the optimal maximum entropy (MaxEnt) distribution is a new effective method for improving the diameter distribution model simulation precision to overcome the disadvantages of Weibull. Background and Objectives: The MaxEnt distribution is the closest to the actual distribution under the constraints, which are the main probability density distributions. However, relatively few studies have addressed the optimization of stand diameter distribution based on MaxEnt distribution. The objective of this study was to introduce application of the MaxEnt distribution on modeling and prediction of stand diameter distribution. Materials and Methods: The long-term repeated measurement data sets consisted of 260 diameter frequency distributions from China fir (Cunninghamia lanceolate (Lamb.) Hook) plantations in the southern China Guizhou. The Weibull distribution and the MaxEnt distribution were applied to the fitting of stand diameter distribution, and the modeling and prediction characteristics of Weibull distribution and MaxEnt distribution to stand diameter distribution were compared. Results: Three main conclusions were obtained: (1) MaxEnt distribution presented a more accurate simulation than three-parametric Weibull function; (2) the Chi-square test showed diameter distributions of unknown stands can be well estimated by applying MaxEnt distribution based on the plot similarity index method (PSIM) and Weibull distribution based on the parameter prediction method (PPM); (3) the MaxEnt model can deal with the complex nonlinear relationship and show strong prediction ability when predicting the stand distribution structure. Conclusions: With the increase of sample size, the PSIM has great application prospects in the dynamic prediction system of stand diameter distribution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []