Disruption of oncogenic targeting by ISWI via phosphorylation of a prion-like domain

2020 
Chromosomal translocations generate oncogenic fusion proteins in approximately one-third of sarcomas, but how these proteins promote tumorigenesis and the effect of cancer therapies on their function are not well understood. Here, we reveal a molecular mechanism by which the fusion oncoprotein FUS-CHOP promotes tumor maintenance that also explains the remarkable radiation sensitivity of myxoid liposarcomas. We identified novel interactions between FUS-CHOP and chromatin remodeling complexes that regulate sarcoma cell proliferation. One of these chromatin remodelers, SNF2H, co-localizes with FUS-CHOP genome-wide at active enhancers. Following ionizing radiation, DNA damage response kinases phosphorylate the prion-like domain of FUS-CHOP to impede these protein-protein interactions, which are required for transformation. Therefore, the DNA damage response after irradiation disrupts oncogenic targeting of chromatin remodelers required for FUS-CHOP-driven sarcomagenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    1
    Citations
    NaN
    KQI
    []