Engineering In Situ Cross-Linkable and Neurocompatible Hydrogels

2014 
Abstract Physical injuries of the central nervous system (CNS) are prevalent and very severe because the CNS has limited capacity to replace neuronal loss from the injury. A growing body of evidence has suggested that exogenous cell transplantation is one promising strategy to promote CNS regeneration. Direct injection of neural stem cells (NSCs) to the lesion site, however, may not be an optimal therapeutic strategy because of poor viability and functionality of transplanted cells resulting from the local hostile tissue environment. The overall objective of this study is to engineer an injectable and biocompatible hydrogel system as a supportive niche to provide a regeneration permissive microenvironment for transplanted NSCs to survive, functionally differentiate, and integrate with host tissues for CNS regeneration. A highly biocompatible hydrogel, based on thiol functionalized hyaluronic acid and thiol functionalized gelatin (Gtn-SH), which can be cross-linked by poly(ethylene glycol) diacrylate (PEGD...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    14
    Citations
    NaN
    KQI
    []