The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth

2007 
Silica is the most abundant oxide component in the Earth mantle by weight, and stishovite, the rutile-structured (P42/mnm) high-pressure phase with silica in six coordination by oxygen, is one of the main constituents of the basaltic layer of subducting slabs. It may also be present as a free phase in the lower mantle and at the core–mantle boundary. Pure stishovite undergoes a displacive phase transition to the CaCl2 structure (Pnnm) at ≈55 GPa. Theory suggests that this transition is associated with softening of the shear modulus that could provide a significant seismic signature, but none has ever been observed in the Earth. However, stishovite in natural rocks is expected to contain up to 5 wt % Al2O3 and possibly water. Here we report the acoustic velocities, densities, and Raman frequencies of aluminum- and hydrogen-bearing stishovite with a composition close to that expected in the Earth mantle at pressures up to 43.8(3) GPa [where (3) indicates an uncertainty of 0.3 GPa]. The post-stishovite phase transition occurs at 24.3(5) GPa (at 298 K), far lower than for pure silica at 50–60 GPa. Our results suggest that the rutile–CaCl2 transition in natural stishovite (with 5 wt % Al2O3) should occur at ≈30 GPa or ≈1,000-km depth at mantle temperatures. The major changes in elastic properties across this transition could make it visible in seismic profiles and may be responsible for seismic reflectors observed at 1,000- to 1,400-km depth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    89
    Citations
    NaN
    KQI
    []