Clinical and In Vitro Evidence That Subclinical Hemolysis Contributes to LVAD Thrombosis
2017
Background Recent data suggest that hemolysis contributes to left ventricular assist device (LVAD) thrombosis, but the mechanism is unknown. In a clinical study, we measured plasma free hemoglobin (pfHgb) and the incidence of LVAD thrombosis. In an in vitro study, we examined biophysical relationships between shear stress, pfHgb and von Willebrand factor (vWF) metabolism toward understanding mechanisms of LVAD thrombosis. Methods In the clinical study, blood samples were obtained from continuous-flow LVAD patients (n = 30). Plasma free hemoglobin was measured via enzyme-linked immunosorbent assay. Plasma lactate dehydrogenase (LDH) was measured with a fluorimetric assay. In the in vitro study, to investigate mechanism, human plasma (n = 10) was exposed to LVAD-like shear stress (175 dyne/cm 2 ) with and without free hemoglobin (30 mg/dL). ADAMTS-13 (the vWF protease) activity was quantified with Forster resonance energy transfer. vWF size was quantified with immunoblotting. vWF clotting function was quantified with an enzyme-linked immunosorbent assay. Results In the clinical study, LVAD support caused subclinical hemolysis. In all patients, LDH increased significantly from 213 ± 9 U/L to 366 ± 31 U/L at 10 days of support ( p 0.0001) and remained significantly elevated at 280 ± 18 U/L at 1 month of support ( p 0.01). In 21 patients that did not develop LVAD thrombosis, pfHgb increased early but decreased over time (pre-LVAD: 5.2 ± 0.8 mg/dL; 1 week: 19.8 ± 4.4 mg/dL, p 0.01; 3 months: 9.3 ± 2.2 mg/dL, p = 0.07). In 9 patients that developed LVAD thrombosis, pfHgb was significantly elevated versus patients without thrombosis before ( p 0.001) and after 3 months ( p 0.05) of support (pre-LVAD: 20.2 ± 6.3 mg/dL; 1 week: 17.3 ± 3.7 mg/dL; 3 months: 21.5 ± 7.8 mg/dL). Similarly, after 3 months, patients that did not develop LVAD thrombosis had an LDH of 271 ± 28 U/L, whereas patients that later developed LVAD thrombosis had a significantly higher LDH of 625 ± 210 U/L ( p = 0.02). In the in vitro study, shear stress degraded vWF similarly to an LVAD. Free hemoglobin inhibited ADAMTS-13 activity during shear stress (633 ± 27 ng/mL to 565 ± 24 ng/mL; p 0.001). vWF was thereby protected from degradation, 4 vWF fragments decreased significantly ( p ≤ 0.05), and vWF clotting function increased (1.15 ± 0.09 U/mL to 1.29 ± 0.09 U/mL, p = 0.06). Conclusions These are the first data to demonstrate mechanistic relationships between subclinical hemolysis and a procoagulant state during continuous-flow LVAD support. Patients with high pfHgb and LDH were more likely to develop LVAD thrombosis. In vitro experiments demonstrated that free hemoglobin inhibited ADAMTS-13, protected vWF from degradation, increased vWF clotting function, and created a procoagulant state. As such, pfHgb may be a clinical target to prevent LVAD thrombosis.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
18
Citations
NaN
KQI