Brownian motion on random dynamical landscapes

2016 
We present a study of overdamped Brownian particles moving on a random landscape of dynamic and deformable obstacles (spatio-temporal disorder). The obstacles move randomly, assemble, and dissociate following their own dynamics. This landscape may account for a soft matter or liquid environment in which large obstacles, such as macromolecules and organelles in the cytoplasm of a living cell, or colloids or polymers in a liquid, move slowly leading to crowding effects. This representation also constitutes a novel approach to the macroscopic dynamics exhibited by active matter media. We present numerical results on the transport and diffusion properties of Brownian particles under this disorder biased by a constant external force. The landscape dynamics are characterized by a Gaussian spatio-temporal correlation, with fixed time and spatial scales, and controlled obstacle concentrations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []