Investigation of distribution, transportation, and impact factors of atmospheric black carbon in the Arctic region based on a regional climate-chemistry model

2019 
Abstract Black carbon (BC) as the main component of pollutants in the Arctic plays an important role on regional climate change. In this study, we applied the regional climate-chemistry model, WRF-Chem, to investigate the spatial distribution, transportation, and impact factors of BC in the Arctic. Compared with reanalysis data and observations, the WRF-Chem performed well in terms of the seasonal variations of meteorological parameters and of in situ BC concentrations, indicating the applicability of this model on Arctic BC simulation works. Our results showed that the BC concentrations in the Arctic had obviously seasonal pattern. Surface BC concentrations peaked during winter and spring seasons, while the minimum occurred during summer and autumn seasons. For the vertical distribution, BC aerosols mainly concentrated in the Arctic lower troposphere, and most of BC distributed near the surface during winter and spring seasons and in the higher atmosphere during other seasons. The seasonality of BC was associated with the seasonal change of meteorological field. During winter, the significant northward airflow prevailing in northern Eurasia caused the transport of accumulated pollutants from this region into the Arctic. The similar but weakened northward airflow pattern and the anticyclone activity during spring can allow pollutants to be transported to the Arctic lower atmosphere. Moreover, the more stable atmosphere during winter and spring seasons made BC accumulated mainly near the surface. During summer and autumn seasons, the less stable boundary layer and the cyclone activity in the Arctic facilitated the diffusion of pollutants into the higher atmosphere. Meanwhile, the higher relative humidity promoted the wet scavenging process leading to the relatively lower BC concentrations near the surface. Compared with the seasonal change of emission, our analysis showed that the seasonal variation of meteorological field was the main contributor for the seasonality of BC in the Arctic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    8
    Citations
    NaN
    KQI
    []