Silk Nanoparticles: A Natural Polymeric Platform for Nitric Oxide Delivery in Biomedical Applications.

2020 
In this study, the preparation and characterization of nitric oxide (NO) releasing silk fibroin nanoparticles (SF NPs) are described for the first time. S-Nitroso-N-acetylpenicillamine (SNAP)-loaded SF NPs (SNAP-SF NPs) were prepared via an antisolvent/self-assembling method by adding a SNAP/ethanol solution to an aqueous SF solution and freeze-thawing. The prepared SNAP-SF NPs had a diameter ranging from 300 to 400 nm and an overall negative charge of -28.76 ± 0.73 mV. Among the different SNAP/SF ratios tested, the highest encapsulation efficiency (18.3 ± 1.3%) and loading capacity (9.1 ± 0.6%) values were attributed to the 1:1 ratio. The deconvolution of the amide I band in the FTIR spectra of SF NPs and SNAP-SF NPs showed an increase in the β-sheet content for SNAP-SF NPs, confirming the hydrophobic interactions between SNAP and silk macromolecules. SNAP-SF NPs released up to 1.31 ± 0.02 × 10-10 mol min-1 mg-1 NO over a 24 h period. Moreover, SNAP-SF NPs showed concentration-dependent antibacterial effects against methicillin-resistant Staphylococcus aureus and Escherichia coli. Furthermore, they did not elicit any marked cytotoxicity against 3T3 mouse fibroblast cells at concentrations equal to or below 2 mg/mL. Overall, these results demonstrated that SNAP-SF NPs have great potential to be used as a NO delivery platform for biomedical applications such as tissue engineering and wound healing, where synergistic properties of SF and NO are desired.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    7
    Citations
    NaN
    KQI
    []