Surface-Modified Hollow Ternary NiCo2Px Catalysts for Efficient Electrochemical Water Splitting and Energy Storage

2019 
Generally, a cost-effective electrocatalytic process that offers an efficient electrochemical energy conversion and storage necessitates a rational design and selection of structure as well as composition of active catalytic centers. Herein, we achieved an unprecedented surface morphology and shape tuning to obtain hollow NiCo2Px with a continuum of active sharp edges (spiked) on a hollow spherical surface by means of facile hydrothermal treatments. The highly exposed, branched spike-covered hollow structure of NiCo2Px shows remarkable performance enhancement for hydrogen evolution reaction and oxygen evolution reaction in a wide range of Ph solutions. This catalytic performance was utilized to assemble a water electrolyzer working in an alkaline environment. In particular, this electrolyzer only requires an output voltage of 1.62 V to deliver a current density of 10 mA cm–2 and shows almost no decrease in this value even after a continuous run for 50 h. The new surface-engineered NiCo2Px establishes to b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    12
    Citations
    NaN
    KQI
    []