Crack-Free Welding of IN 738 by Linear Friction Welding

2011 
Inconel 738 (IN 738), like other precipitation-hardened nickel-base superalloys that contain a substantial amount of Al and Ti, is very difficult to weld due to its high susceptibility to heat-affected zone (HAZ) cracking during conventional fusion welding processes. The cause of this cracking, which is usually intergranular in nature, has been attributed to the liquation of various phases in the alloy, subsequent wetting of the grain boundaries by the liquid and decohesion across one of the solid-liquid interfaces due to on-cooling tensile stresses. In the present work, crack-free welding of the alloy was obtained by linear friction welding (LFW), notwithstanding the high susceptibility of the material to HAZ cracking. Gleeble thermomechanical simulation of the LFW process was carefully performed to study the microstructural response of IN 738 to the welding thermal cycle. Correlation between the simulated microstructure and that of the weldments was obtained, in that, a significant grain boundary liquation was observed in both the simulated specimens and actual weldments due to non-equilibrium reaction of second phase particles, including the strengthening gamma prime phase. These results show that in contrast to the general assumption of LFW being an exclusively solid-state joining process, intergranular liquation is possible during LFW. However, despite a significant occurrence of liquation in the alloy, no HAZ cracking was observed, which can be partly related to the nature of the imposed stress during LFW
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    10
    Citations
    NaN
    KQI
    []