Systematic In Silico Design, Synthesis, and Biological Studies of Some Novel 1,4-Benzoquinone Derivatives for the Prospective Management of Cognitive Decline.

2021 
Cholinesterases are significant biological targets for the regulation of cholinergic neurotransmission, and their inhibitors are being exploited for the management of cognitive decline in various neurological conditions. The 1,4-benzoquinone scaffold possesses antioxidant potential along with AChE inhibition activity in various neurological disorders. To design novel and potent selective 1,4-benzoquinone analogues as cholinesterase inhibitors, a ligand-based drug design strategy was followed to develop a 3D quantitative structure-selectivity relationship (QSSR) model. On the basis of the best fit model, eight novel 1,4-benzoquinone derivatives were designed and synthesized implementing appropriate synthetic procedures and were characterized by various spectral and elemental techniques. All the synthesized compounds were evaluated for their selective in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential at different concentrations using mice brain homogenate as the source of the enzyme. Out of these compounds, the three most selective compounds were further evaluated for behavioral variations using step down passive avoidance and escape learning procedure at a dose of 0.5 mg/kg taking donepezil as the reference drug. Biochemical estimation of the markers of oxidative stress (lipid peroxidation, superoxide dismutase, glutathione, and catalase) has also been carried out to determine the role of the synthesized molecules on the scopolamine induced oxidative damage. Compound 2a displayed appreciable selectivity index values as predicted through the 3D-QSSR model. Further, docked complexes of compound 2a with AChE and BChE were subjected to molecular dynamic simulations for a period of 30 ns to study the orientations and stable conformations of the most active molecules in the catalytic domain of these enzymes. The results obtained from the 3D-QSSR analysis, docking, and molecular dynamic studies were found to be appreciable and provided a deep insight into the structural features required for the selectivity of AChE inhibitors over BChE. The outcome of this study may be used as a novel tool to design new highly selective and more potent molecules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []