Fiber optic shape sensing for monitoring of flexible structures

2012 
Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    33
    Citations
    NaN
    KQI
    []