Some basic problems in anisotropic bimaterials with a viscoelastic interface

2009 
This research is devoted to the study of anisotropic bimaterials with Kelvin-type viscoelastic interface under antiplane deformations. First we derive the Green’s function for a bimaterial with a Kelvin-type viscoelastic interface subjected to an antiplane force and a screw dislocation by means of the complex variable method. Explicit expressions are derived for the time-dependent stress field induced by the antiplane force and screw dislocation. Also presented is the time-dependent image force acting on the screw dislocation due to its interaction with the Kelvin-type viscoelastic interface. Second we investigate a rectangular inclusion with uniform antiplane eigenstrains embedded in one of the two bonded anisotropic half-planes by virtue of the derived Green’s function for a line force. The explicit expressions for the time-dependent stress field induced by the rectangular inclusion are obtained in terms of the simple logarithmic and exponential integral functions. It is observed that in general the stresses exhibit the logarithmic singularity at the four corners of the rectangular inclusion. Our results also show that when one side of the rectangular inclusion lies on the viscoelastic interface, the interfacial tractions are still regular at the two corners of the inclusion which are located on the interface. Last we address a finite Griffith crack normal to the viscoelastic interface by means of the obtained Green’s function for a screw dislocation. The crack problem is formulated in terms of a resulting singular integral equation which is solved numerically. The time-dependent stress intensity factors at the two crack tips are obtained and some interesting features are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    4
    Citations
    NaN
    KQI
    []