Characterizations of organic compounds in diesel exhaust particulates
2015
Abstract To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter (PM) below 1 μm, four driving conditions were examined. At all four driving conditions, concentration of identifiable organic compounds in PM ultrafine (34–94 nm) and accumulation (94–1000 nm) modes ranged from 2.9 to 5.7 μg/m 3 and 9.5 to 16.4 μg/m 3 , respectively. As a function of driving conditions, the non-oxygen-containing organics exhibited a reversed concentration trend to the oxygen-containing organics. The identified organic compounds were classified into eleven classes: alkanes, alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers, nitrogen-containing compounds, and sulfur-containing compounds. At all driving conditions, alkane class consistently showed the highest concentration (8.3 to 18.0 μg/m 3 ) followed by carboxylic acid, esters, ketones and alcohols. Twelve polycyclic aromatic hydrocarbons (PAHs) were identified with a total concentration ranging from 37.9 to 174.8 ng/m 3 . In addition, nine nitrogen-containing polycyclic aromatic compounds (NPACs) were identified with a total concentration ranging from 7.0 to 10.3 ng/m 3 . The most abundant PAH (phenanthrene) and NPACs (7,8-benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular (3 aromatic-ring) structure under the highest engine speed and engine load.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
49
References
8
Citations
NaN
KQI