Self-powered monoelectrodes made from graphene composite films to harvest rain energy

2018 
Abstract Development of self-powered monoelectrodes for clean energy harvest is a promising solution to meet the growing energy demands for modern electronic device applications. To address this issue, a category of self-powered monoelectrodes are made from cost-effective graphene composite films to harvest rain energy. Periodic current and voltage signals are recorded under rain stimulation to evaluate their rain-to-electricity efficiency. The mechanism behind rain energy harvest arises from charging/discharging cycles of electric π-electron (graphene)|cation (rain) double-layer pseudocapacitances at graphene film/raindrop interface. The maximized current of 2.15 μA/raindrop, voltage of 129.83 μV/raindrop and power of 295.48 pW/raindrop are yielded in the optimized conversion devices. The present work may provide new insights on harvesting waste energies in rain-enriched regions by designing electron-enriched monoelectrodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    9
    Citations
    NaN
    KQI
    []