Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers

2016 
The design of chemically stable and electrochemically reversible redox active polymers (RAPs) is of great interest for energy storage technologies. Particularly, RAPs are new players for flow batteries relying on a size-exclusion based mechanism of electrolyte separation, but few studies have provided detailed molecular understanding of redox polymers in solution. Here, we use a systematic molecular design approach to investigate the impact of linker and redox-pendant electronic interactions on the performance of viologen RAPs. We used scanning electrochemical microscopy, cyclic voltammetry, bulk electrolysis, temperature-dependent absorbance, and spectroelectrochemistry to study the redox properties, charge transfer kinetics, and self-exchange of electrons through redox active dimers and their equivalent polymers. Stark contrast was observed between the electrochemical properties of viologen dimers and their corresponding polymers. Electron self-exchange kinetics in redox active dimers that only differ b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    45
    Citations
    NaN
    KQI
    []