Recombinant Rv3261 protein of Mycobacterium tuberculosis induces apoptosis through a mitochondrion-dependent pathway in macrophages and inhibits intracellular bacterial growth.

2020 
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen known to persist in host cells. The apoptotic response of macrophages serves as a defense mechanism to inhibit the growth of intracellular bacteria, the failure of which can favor the spread of the pathogen to new cells. However, the mycobacterial components that regulate cell death and the related underlying mechanisms remain poorly understood. In this study, we investigated protein Rv3261, isolated from an Mtb culture filtrate, for its apoptotic potential using multidimensional fractionation. Rv3261 was found to induce macrophage apoptosis through the caspase-3/-9-dependent pathway. Furthermore, the ROS-dependent JNK activation pathway was found to be critical in Rv3261-mediated apoptosis. Rv3261 inhibited the growth of intracellular Mtb, which was significantly abrogated by pre-treatment with the ROS scavenger N-acetylcysteine (NAC), suggesting that Rv3261-mediated apoptosis may act as a host defense response. These findings suggest that Rv3261 is involved in the apoptotic modulation of Mtb-infected macrophages.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    5
    Citations
    NaN
    KQI
    []