Ni-Mo based mixed-phase polyionic compounds nanorod arrays on nickel foam as advanced bifunctional electrocatalysts for water splitting
2021
Abstract The exploration of low-cost, high-efficient and robust bifunctional electrocatalysts for water splitting is urgently desired for developing clean hydrogen energy conversion technology. In this work, we present a facile and effective one-step molten salt synthesis tactics to prepare self-supported 1D Ni-Mo based mixed-phase polyionic compounds nanorod arrays (NMNAs). Due to the exposed more active sites of this nanostructure and accelerated charge transfer derived from modulated electronic structures between Ni-Mo, the as-fabricated NMNAs electrodes deliver remarkable bifunctional electrocatalytic water splitting performance, with overpotential values of 234.2 mV at 200 mA cm−2 and 191.2 mV at 100 mA cm−2 in 1 M KOH for OER and HER, respectively. Furthermore, the alkaline electrolyzer composed of NMNAs needs a low overall-water-splitting cell voltage of 1.423 V to drive a current density of 10 mA cm−2. This work will shed light on the preparation of other related self-supporting nanostructured bifunctional electrocatalysts with excellent performance.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
4
Citations
NaN
KQI