Single-particle fluctuations and directional correlations in driven hard-sphere glasses

2013 
Via event-driven molecular dynamics simulations and experiments, we study the packing-fraction and shear-rate dependence of single-particle fluctuations and dynamic correlations in hard-sphere glasses under shear. At packing fractions above the glass transition, correlations increase as shear rate decreases: the exponential tail in the distribution of single-particle jumps broadens and dynamic four-point correlations increase. Interestingly, however, upon decreasing the packing fraction, a broadening of the exponential tail is also observed, while dynamic heterogeneity is shown to decrease. An explanation for this behavior is proposed in terms of a competition between shear and thermal fluctuations. Building upon our previous studies [Chikkadi et al., Europhys. Lett. 100, 56001 (2012)], we further address the issue of anisotropy of the dynamic correlations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    21
    Citations
    NaN
    KQI
    []