Optimization of noisy nonuniform sampling and image reconstruction for fast MRI using a human vision model

2001 
We are developing clinical magnetic resonance imaging (MRI) strategies using spiral acquisition techniques that sample k-space nonuniformly. These methods require a regridding process. Multiple regridding and reconstruction algorithms have been proposed, and we use a perceptual difference model (PDM) to optimize them. We acquired sixteen in vivo MR brain images and simulated reconstruction from a spiral k-space trajectory. Regridding was done by the conventional method of Jackson et al., the block uniform resampling algorithm (BURS), and a newly developed method named matrix rescaling. Each of 16 reference images was reconstructed with multiple parameter sets resulting in a total of over 800 different images. The spiral MR images were compared to the original, fully sampled image using a PDM. Of the three reconstruction methods, the conventional and high-level matrix rescaling methods produce high quality images, but the latter method executed much faster. BURS worked only in extremely low- noise instances, making it often inappropriate. We also demonstrated the effect of display parameters, such as grayscale windowing on image quality. We believe that the PDM techniques provide a promising tool for the evaluation of MR image quality that can aid the engineering design process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []