Structure of Biologically Active Benzoxazoles: Crystallography and DFT Studies

2020 
Using X-ray single crystal diffraction, the crystal structures of biologically active benzoxazole derivatives were determined. DFT calculation was performed with standard 6-31G*(d), 6-31G** and 6-31+G* basis set to analyze the molecular geometry and compare with experimentally obtained X-ray crystal data of compounds. The calculated HOMO-LUMO energy gap in compound 2 (2-(2-hydroxynaphtalen-1-yl)-4-methyl-7-isopropyl-1,3-benzoxazol-5-ol) is 3.80 eV and this small gap value indicates that compound 2 is chemically more reactive compared to compounds 1 (4-methyl-2-phenyl-7-isopropyl-1,3-benzoxazol-5-ol) and 3 (2-(4-chlorophenyl)-4-methyl-7-isopropyl-1,3-benzoxazol-5-ol). The crystal structures are stabilized by both intra- and intermolecular hydrogen bonds in which an intermolecular O–H⋅⋅⋅N hydrogen bond generates N3 and O7 chain motif in compounds 1 , 2 , and 3 , respectively. The calculated bond lengths and bond angles of all three compounds are remarkably close to the experimental values obtained by X-ray single crystal diffraction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []