Dual branes in topological sigma models over Lie groups. BF-theory and non-factorizable Lie bialgebras
2005
We complete the study of the Poisson-Sigma model over Poisson-Lie groups. Firstly, we solve the models with targets $G$ and $G^*$ (the dual group of the Poisson-Lie group $G$) corresponding to a triangular $r$-matrix and show that the model over $G^*$ is always equivalent to BF-theory. Then, given an arbitrary $r$-matrix, we address the problem of finding D-branes preserving the duality between the models. We identify a broad class of dual branes which are subgroups of $G$ and $G^*$, but not necessarily Poisson-Lie subgroups. In particular, they are not coisotropic submanifolds in the general case and what is more, we show that by means of duality transformations one can go from coisotropic to non-coisotropic branes. This fact makes clear that non-coisotropic branes are natural boundary conditions for the Poisson-Sigma model.
Keywords:
- Correction
- Cite
- Save
- Machine Reading By IdeaReader
20
References
0
Citations
NaN
KQI