Polysucrose-based hydrogels for loading of small molecules and cell growth

2017 
Abstract Cross-linked polysucrose hydrogels were synthesized for the first time from polysucrose grafted with methacrylic anhydride (MA) and crosslinked with ethylene glycol dimethacrylate (EGDMA). The addition of sucrose and polyethylene glycol monomethyl ether (mPEG5000) as porogens to the cross-linking reaction led to the formation of interconnected pores as well as a shift from a homogeneous non-porous to a heterogeneous porous surface. The potential of this family of hydrogels as biomaterial was assessed through the determination of the loading/release capacity of cationic and anionic dyes as model molecules and biocompatibility test with fibroblast cells. Cationic dyes showed high loading and sustained release over time attributed to the ionic interactions of the dyes with the hydrogels carrying a net negative charge. Anionic dyes on the other hand showed a rapid sinusoidal loading/release pattern. The release of the dyes was found to increase with increasing swelling capacity. NIH 3T3 fibroblast cells proliferated on hydrogels containing a porous structure and avoided the non-porous areas of the hydrogel surface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []