Evidence for two sites on rat liver plasma membranes which interact with high density lipoprotein.

1992 
Abstract There is little dispute that high density lipoprotein (HDL) binds to cells, however, the nature of the interaction is not fully understood. We now present evidence for a new binding site of higher affinity but lower capacity than the sites previously described in the literature. This new site is characterized by high affinity/low capacity for HDL binding (Kd = 0.94 microgram/ml, Bmax = 36 ng/mg), while the low affinity site (Kd = 36 micrograms/ml, Bmax approximately 700 ng/mg) appears to be consistent with the literature values for the interaction of HDL with cells and isolated membranes. Proteolysis of HDL with trypsin abolished its interaction with the high affinity site, suggesting an apolipoprotein requirement, while having no effect on binding to the lower affinity site. Kinetic rates of association/dissociation were determined in order to further characterize the high affinity site. At a concentration which favored the binding of HDL with the high affinity site (1 microgram/ml, 37 degrees C), the time course of association of HDL with rat liver plasma membranes, displayed a biphasic pattern, requiring 6-8 h to reach the level of binding predicted from the saturation studies. The second phase was highly sensitive to temperature, being considerably slower at 24 degrees C and totally abolished at 0 degrees C. A kinetic Kd, derived from the measured association and dissociation rate constants (Kd = 0.31 microgram/ml), was found to be of a similar magnitude to the Kd calculated for the high affinity site by Scatchard analysis (Kd = 0.94 microgram/ml). In summary, the high affinity site on rat liver plasma membranes displays an apoprotein requirement and kinetic parameters, consistent with a ligand-receptor interaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    38
    Citations
    NaN
    KQI
    []