Antibacterial and anticorrosive properties of CuZnO@RGO waterborne polyurethane coating in circulating cooling water

2019 
In order to control bacterial adhesion and metal corrosion in the circulating cooling water system, it is necessary to prepare a nanocomposite-modified coating with antibacterial and anticorrosive functions. Copper and zinc composite oxide (CuZnO) was synthesized to prepare CuZnO@RGO nanocomposites. The antibacterial mechanism of CuZnO@RGO nanocomposites was investigated using gram-negative bacteria E. coli and gram-positive bacteria S. aureus as the two model microorganisms. The antibacterial properties of CuZnO@RGO nanocomposites on mixed bacteria were researched in the cooling water system. In addition, the CuZnO@RGO waterborne polyurethane (WPU) composite coating (CuZnO@RGO/WPU) was synthesized. The antibacterial performance, hardness, and corrosion inhibition performance of CuZnO@RGO/WPU composite coating in the cooling water system were also investigated. The results showed that after adding CuZnO@RGO nanocomposites to E. coli or S. aureus suspension, the protein leakage after 20 h was 9.3 times or 7.2 times higher than that in the blank experiment. The antibacterial rate of CuZnO@RGO nanocomposites in circulating cooling water reached 99.70% when the mass fraction of RGO was 15%. When the mass fraction of CuZnO@RGO accounting for CuZnO@RGO/WPU composite coating was 2%, the antibacterial rate, hardness, and corrosion inhibition efficiency were 94.35%, 5H, and 93.30%, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    19
    Citations
    NaN
    KQI
    []