Diurnal Preconditioning of Subtropical Coastal Convective Storm Environments

2017 
AbstractBoundary layer evolution in response to diurnal forcing is manifested at the mesobeta and smaller scales of the atmosphere. Because this variability resides on subsynoptic scales, the potential influence upon convective storm environments is often not captured in coarse observational and modeling datasets, particularly for complex physical settings such as coastal regions. A detailed observational analysis of diurnally forced preconditioning for convective storm environments of South East Queensland, Australia (SEQ), during the Coastal Convective Interactions Experiment (2013–15) is presented. The observations used include surface-based measurements, aerological soundings, and dual-polarization Doppler radar. The sea-breeze circulation was found to be the dominant influence; however, profile modification by the coastward advection of the continental boundary layer was found to be an essential mechanism for favorable preconditioning of deep convection. This includes 1) enhanced moisture in the city...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    5
    Citations
    NaN
    KQI
    []