Si/polyaniline-based porous carbon composites with an enhanced electrochemical performance as anode materials for Li-ion batteries

2018 
Silicon/polyaniline-based porous carbon (Si/PANI-AC) composites have been prepared by a three-step method: coating polyaniline on Si particles using in situ polymerization, carbonizing, and further activating by steam. The morphology and structure of Si/PANI-AC composites have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectra, respectively. The content and pore structure of the carbon coating layer in Si/PANI-AC have been measured by thermogravimetric analysis and N2 adsorption-desorption isotherm, respectively. The results indicate some micropores about 1~2 nm in the carbon layer appear during activation and that crystal structure and morphology of Si particles can be retained during preparation. Si/PANI-AC composites exhibit high discharge capacity about 1000 mAh g−1 at 1.5 A g−1; moreover, when the current density returns to 0.2 A g−1, the discharge capacity is still 1692 mAh g−1 and remains 1453 mAh g−1 after 70 cycles. The results indicate that the porous carbon coating layer in composites plays an important role in the improvement of the electrochemical performance of pure Si.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    5
    Citations
    NaN
    KQI
    []