High‐throughput ultra‐high‐performance liquid chromatography/tandem mass spectrometry quantitation of insulin‐like growth factor‐I and leucine‐rich α‐2‐glycoprotein in serum as biomarkers of recombinant human growth hormone administration

2009 
Insulin-like growth factor-I (IGF-I) is a known biomarker of recombinant human growth hormone (rhGH) abuse, and is also used clinically to confirm acromegaly. The protein leucine-rich α-2-glycoprotein (LRG) was recently identified as a putative biomarker of rhGH administration. The combination of an ACN depletion method and a 5-min ultra-high-performance liquid chromatography/tandem mass spectrometry (uHPLC/MS/MS)-based selected reaction monitoring (SRM) assay detected both IGF-I and LRG at endogenous concentrations. Four eight-point standard addition curves of IGF-I (16–2000 ng/mL) demonstrated good linearity (r2 = 0.9991 and coefficients of variance (CVs) <13%). Serum samples from two rhGH administrations were extracted and their uHPLC/MS/MS-derived IGF-I concentrations correlated well against immunochemistry-derived values. Combining IGF-I and LRG data improved the separation of treated and placebo states compared with IGF-I alone, further strengthening the hypothesis that LRG is a biomarker of rhGH administration. Artificial neural networks (ANNs) analysis of the LRG and IGF-I data demonstrated an improved model over that developed using IGF-I alone, with a predictive accuracy of 97%, specificity of 96% and sensitivity of 100%. Receiver operator characteristic (ROC) analysis gave an AUC value of 0.98. This study demonstrates the first large scale and high throughput uHPLC/MS/MS-based quantitation of a medium abundance protein (IGF-I) in human serum. Furthermore, the data we have presented for the quantitative analysis of IGF-I suggest that, in this case, monitoring a single SRM transition to a trypsin peptide surrogate is a valid approach to protein quantitation by LC/MS/MS. Copyright © 2009 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    60
    Citations
    NaN
    KQI
    []