Phosphatase and tensin homolog reconstruction and vascular endothelial growth factor knockdown synergistically inhibit the growth of glioblastoma.

2010 
Abstract Glioblastoma (GBM) is a highly malignant tumor with poor prognosis. Two hallmarks of this disease are a high expression of vascular endothelial growth factor (VEGF) and a depletion of the phosphatase and tensin homolog (PTEN). In the present study, combined gene therapy using wild-type PTEN reconstruction and VEGF siRNA was examined for its effectiveness in inhibiting tumor growth and tumorigenicity of PTEN-null GBM cells. In U251 GBM cells, PTEN restoration reduced proliferation, arrested the cell cycle at G0/G1 stage, and promoted apoptosis via inhibition of PIK/AKT signaling pathway. Unexpectedly, anchorage-dependent and -independent colony formation ability and the capacity for wound-healing migration of U251 cells with stable expression of VEGF siRNA were significantly inhibited, suggesting that VEGF also appeared to function as an autocrine growth factor in addition to its well-known pro-angiogenic paracrine function. Further, a combined treatment of PTEN restoration and VEGF siRNA had the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    6
    Citations
    NaN
    KQI
    []