High-sensitivity nanoscale chemical imaging with hard x-ray nano-XANES.

2020 
Resolving chemical species at the nanoscale is of paramount importance to many scientific and technological developments across a broad spectrum of disciplines. Hard x-rays with excellent penetration power and high chemical sensitivity are suitable for speciation of heterogeneous (thick) materials. Here, we report nanoscale chemical speciation by combining scanning nanoprobe and fluorescence-yield x-ray absorption near-edge structure (nano-XANES). First, the resolving power of nano-XANES was demonstrated by mapping Fe(0) and Fe(III) states of a reference sample composed of stainless steel and hematite nanoparticles with 50-nm scanning steps. Nano-XANES was then used to study the trace secondary phases in lithium iron phosphate (LFP) particles. We observed individual Fe-phosphide nanoparticles in pristine LFP, whereas partially (de)lithiated particles showed Fe-phosphide nanonetworks. These findings shed light on the contradictory reports on Fe-phosphide morphology in the literature. Nano-XANES bridges the capability gap of spectromicroscopy methods and provides exciting research opportunities across multiple disciplines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    12
    Citations
    NaN
    KQI
    []