On the Conditions of Existence for Linear MMSE Filters
2021
Abstract State estimation is a fundamental task in a plethora of applications. Two important classes of linear minimum mean square error (MMSE) estimators are Wiener filters (WFs) and Kalman filters (KFs), the latter being the recursive form of the former for linear discrete state-space (LDSS) dynamic models. The minimum set of uncorrelation conditions regarding states and measurements which allows to formulate a general KF form has been recently introduced in the literature, but for both WFs and KFs a standard key assumption is that the measurement noise covariance is invertible. In this contribution we provide i) an alternative derivation of the WF in the case of a non-invertible measurement covariance matrix, and ii) the proof that under the minimum set of uncorrelation conditions lately released, the KF can always be formulated irrespective of the measurement covariance matrix rank. Notice that these results also apply for Kalman predictors and smoothers, linearly constrained WFs and minimum variance distortionless response (MVDR) filters, therefore being a remarkable result of broad interest.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
10
References
0
Citations
NaN
KQI