Estudo dos efeitos da solvatação aquosa na norepinefrina usando Dinâmica Molecular de Car-Parrinello

2020 
Norepinephrine, synthesized from tyrosine, is a neurotransmitter of sympathetic post-ganglion neurons. Norepinephrine regulates many critical functions which include attention, memory, learning and cardiovascular functions. This neurotransmitter has several pharmacological uses, such as adrenergic stimulants, widely used in the treatment of hypertension, cardiac surgery and in myocardial infarction. It is extremely important to study the interaction between drugs and water molecules, for a better understanding of absorption, transport and biological action. Within this context, the Car-Parrinello Molecular Dynamics, by treating the solvent explicitly, becomes ideal for the study of solvated media. In this sense, the objective of this work is to analyze the effects of aqueous solvation on the geometric and electronic parameters of norepinephrine using the Molecular Dynamics of Car-Parrinelo. The solvation dynamics was performed using the CPMD program package (version 4.1). The Radial Distribution Function of the hydrogen and oxygen atoms of the water molecules in the first solvation shell were performed for the O1, O2, O3, N7, H4, H5, H6, H8 and H9 atoms of the norepinephrine. The Radial Distribution Function analyzes indicate that most sites have a well-defined peak (N7, O1, O3, H4, H5 and H6). For the O2, H8 e H9 atoms, there are no well-defined peaks, suggesting that these sites do not interact with the atoms of the water molecules, or even the possibility of intra-molecular interactions. These criteria were considered for the next stages of this work, which are already being carried out, and they are analyzes of possible interactions of hydrogen with these sites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []