language-icon Old Web
English
Sign In

Definable categories and T-motives

2018 
Making use of Freyd's free abelian category on a preadditive category we show that if $T:D\rightarrow \mathcal{A}$ is a representation of a quiver $D$ in an abelian category $\mathcal{A}$ then there is an abelian category $\mathcal{A} (T)$, a faithful exact functor $F_T: \mathcal{A} (T) \to \mathcal{A}$ and an induced representation $\tilde T: D \to \mathcal{A} (T)$ such that $F_T\tilde T= T$ universally. We then can show that $\mathbb{T}$-motives as well as Nori's motives are given by a certain category of functors on definable categories.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []