Photonic polymeric structures and electrodynamics simulation method based on a coupled Oscillator Finite-Difference Time-Domain (O-FDTD) approach

2021 
We use femtosecond laser-based two-photon polymerization (TPP) to fabricate a 2.5D micropillar array. Using an angular detection setup, we characterize the structure’s scattering properties and compare the results against simulation results obtained from a novel electrodynamics simulation method. The algorithm employs a modified formulation of the Lorentz Oscillator Model and a leapfrog time differentiation to define a 2D coupled Oscillator Finite-Difference Time-Domain (O-FDTD). We validate the model by presenting several simulation examples that cover a wide range of photonic components, such as multi-mode interference splitters, photonic crystals, ring resonators, and Mach-Zehnder interferometers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    3
    Citations
    NaN
    KQI
    []