Tibial displacement with stifle joint flexion and cranial cruciate ligament transection in the dog

2014 
Objective: The aim of this study was to investigate the biomechanical effects of cranial cruciate ligament (CrCL) transection on stifle stability at three different stifle joint flexion angles using a robotic system. Methods: This was an ex vivo biomechanical study. Stifles (n = 6) were collected from the cadavers of Beagles weighing 10.5–12.0 kg. Six stifle joints were dissected, potted, and secured to the manipulator arms of a robotic simulator. With the stifle joint angle maintained at either hyperextension (151°), 135° or 90°, stability was assessed by application of a 50 N load in either the cranial-caudal (CrCd test) or proximal-distal (PD test) directions. The stifle was given a cranial-caudal load of 50 N (CrCd test). A proximal-distal compression load of 50 N was then administered by the manipulator (proximal-distal test: PD test). The change in three-dimensional kinematics of the intact and the CrCL-transected stifles was compared between hyperextension, and 135° and 90° flexion for the CrCd and PD load conditions. A value of p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    6
    Citations
    NaN
    KQI
    []