Optimized protocols for studying the NLRP3 inflammasome and assessment of potential targets of CP-453,773 in undifferentiated THP1 cells
2019
Abstract The NLRP3 inflammasome is a complex multimeric signaling apparatus that regulates production of the pro-inflammatory cytokine IL-1β. To overcome both the variability among primary immune cells and the limitations of genetic manipulation of differentiated human or murine macrophages, we developed a simplified, reliable and relevant cell-based model for studying the NLRP3 inflammasome using the undifferentiated human myelomonocytic cell line THP1. Undifferentiated THP1 cells constitutively express NLRP3, and NLRP3 inflammasome activation occurred in response to canonical NLRP3 activation stimuli including nigericin, ATP, and urea crystals, culminating in pro-IL-1β cleavage, extracellular release of mature IL-1β, and pyroptosis. We used this THP1 cell system to investigate potential targets of the potent, NLRP3 inflammasome selective inhibitor CP-456,773. We optimized a viral shRNA transduction method for gene expression knockdown (KD), and the KD of NLRP3 itself eliminated inflammasome activation and IL-1β production. NLRP3 inflammasome activation and CP-453,773 pharmacology were not altered in ABCb7- or ABCb10-deficient THP1 cells, eliminating these gene products as candidate pharmacological targets of CP-453,773. For ABCb10, we confirmed our results using CRISPR/CAS9-mediated ABCb10 knockout (KO) THP1 sub-lines. In summary, undifferentiated THP1 cells are fully competent for activation of the NLRP3 inflammasome and production of IL-1β, without differentiation into macrophages, and we describe optimized KD and KO methodologies to manipulate gene expression in these cells. As an example of the utility of undifferentiated THP1 cells for investigations into the biology of the NLRP3 inflammasome, we have used this cell system to rule out ABCb7 and ABCb10 as potential targets of the NLRP3 inflammasome inhibitor CP-453,773.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
4
Citations
NaN
KQI