Dependence of skull surface wave propagation on stimulation sites and direction under bone conduction.

2020 
In order to better understand bone conduction sound propagation across the skull, three-dimensional (3D) wave propagation on the skull surface was studied, along with its dependence on stimulation direction and location of a bone conduction hearing aid (BCHA) actuator. Experiments were conducted on five Thiel embalmed whole head cadaver specimens. Stimulation, in the 0.1–10 kHz range, was sequentially applied at the forehead and mastoid via electromagnetic actuators from commercial BCHAs, supported by a 5-N steel band. The head response was quantified by sequentially measuring the 3D motion of ∼200 points (∼15–20 mm pitch) across the ipsilateral, top, and contralateral skull surface via a 3D laser Doppler vibrometer (LDV) system, guided by a robotic positioner. Low-frequency stimulation (<1 kHz) resulted in a spatially complex rigid-body-like motion of the skull that depended on both the stimulation condition and head support. The predominant motion direction was only 5–10 dB higher than other components below 1 kHz, with no predominance at higher frequencies. Sound propagation direction across the parietal plates did not coincide with stimulation location, potentially due to the head base and forehead remaining rigid-like at higher frequencies and acting as a large source for the deformation patterns across the parietal sections.In order to better understand bone conduction sound propagation across the skull, three-dimensional (3D) wave propagation on the skull surface was studied, along with its dependence on stimulation direction and location of a bone conduction hearing aid (BCHA) actuator. Experiments were conducted on five Thiel embalmed whole head cadaver specimens. Stimulation, in the 0.1–10 kHz range, was sequentially applied at the forehead and mastoid via electromagnetic actuators from commercial BCHAs, supported by a 5-N steel band. The head response was quantified by sequentially measuring the 3D motion of ∼200 points (∼15–20 mm pitch) across the ipsilateral, top, and contralateral skull surface via a 3D laser Doppler vibrometer (LDV) system, guided by a robotic positioner. Low-frequency stimulation (<1 kHz) resulted in a spatially complex rigid-body-like motion of the skull that depended on both the stimulation condition and head support. The predominant motion direction was only 5–10 dB higher than other components ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []