DEVELOPMENT OF ISOTOPICALLY ENRICHED BORON-DOPED ALUMINA DOSIMETER FOR THERMAL NEUTRONS.

2017 
: A novel optically stimulated luminescence (OSL) detector containing isotopically enriched boron was developed for thermal neutron dosimetry. Alumina containing isotopically enriched boron (Al2O3:B) was synthesised by the sol-gel method. The Al2O3:B was annealed up to ~1800 K. For X-ray diffractometer (XRD) analysis, the diffraction pattern of the Al2O3:B had reflex peaks corresponding to α-Al2O3. The sensitivity of Al2O3:B to photons was slightly 2% of that of a commercial Al2O3:C. The Al2O3:B detector had satisfactory linearity in X-ray dose measurement. A thermal neutron field was constructed using a 241Am-Be neutron source and graphite blocks. A pair of Al2O3:10B and Al2O3:11B detectors were set in the thermal neutron field. The response of Al2O3:10B was larger than that of Al2O3:11B owing to the 10B(n,α)7Li reactions. The sensitivity of Al2O3:10B to thermal neutrons was estimated to be two orders less than the photon sensitivity. Therefore, the pair of Al2O3:10B and Al2O3:11B detectors were useful for thermal neutron dosimetry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []